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Abstract ..

. We describe a procedure for findin / where E is an arbitrary func-
tional of the temporal trajectory of the states of a continuous recurrent network
and wi are the weights of that network. An embellishment of this procedure
involving only computations that go forward in time is also described. Corn- -
puting these quantities allows one to perform gradient desccnt in the weights to .g
minimize E, so our procedure forms the kernel of a new connectionist learning
algorithm.

I Introduction

Pineda [2) has shown how to train the fixpo,... of a recurrent temporally continuous
generalization of backpropagation networks [3]. Such networks are governed by the
coupled differential equations

Ti -Yi + (x) +(1)

where
xi -- wjiYj

is the total input to unit i. yj is the state of unit i, Tj is the time constant of unit i, a is
an arbitrary differentiable function', wq are the veights, and L&e boundary conditions
y(to) and driving functions I are the input to the system. See figure 2 for a graphical
representation of this equation.
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Consider Ely). an arbitrary functional of the trajectory taken by ' v between t,
and ti. Below. vwe develop a technique for computing '3Ey)10w,, and :'E(y, ,
thus allowing us to do gradient descent in the weights and time constants so as Lo

minimize E. The computation of OE/Ow, seems to require a phase in which the

network is run backwards in time, but a trick for avoiding this is also developed.

2 The Equations

Let us define e()=lmc- Ey

In the usual case where E is of the form E(y) = f~'f(y(t). t)dt this means that

el = Laf(y(rO. 0 /Ovj(0. Intuitively, e,(t) measures how much a small change to y, at

time teffects E if everything else is left unchanged. We also define

Z'(t W E3''~ at =0 (3)

where ( is the same as y except that d5'i/dt has a Dirac delta function of magnitude
, added to it at time 1. Intuitively, zi(t) measures how much a small change to y5
at time t effects E when the change to y, is propagated forward through time and

influences the remainder of the trajectory.

Figure 1: The infinitesimal changes to y considered in el () (left) and z, () (right).

We can approximate (1) with the difference equation

y,(1 4- -,t r y'(t) + Adyidt

or

Y, (t+ zt) '; (I - : 'yi(t) + 4t-(X*()) + -1 t1, () (4)

which is exact in the limnit as ,It - 0.
2For instance F ni (vc(o - ftr\\2

± rn-_ire devisfie'~' of yc from Ll-.e fiin'!on f, a... Iii.zsng

this E would teach the network to have yo initatef.
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Figure 2: A lattice representation of (4).

Consider incremening Yi(t) by c and letting this change propagate forward. The

differential of E(y) w-r.t, c is thus the sum of the differentials of E~y) w.r.t, the other

values that y,(t) influences, weighted by the magnitude of its influence. By examining

all the outgoing fines from node Y,(t) in figure 2 we are led to a difference equation

for z,(t),

zi(t) - It zi(t +At1)+,at ej(t) +". -- )O"(xj(t))Zj(t + 1t), (5

z~)

where the (I - at1Tz,(t) term is due to thelinear influence ,(t) has upon yi(t+t).

the r, term is due to the effect that changing y(t) has upon tlhe other yj(t+.At) through

their nonlinear coupling, and the ytei(t) term is due to the effect that changing Yj

between times t and t + .,It has directly upon E. By rewriting (5) as

zi(t) - zj(t +at) - at z(t + 4t) - ei(t) - E I.woju'(xj(t))zj(t + At) (

assuming this to be of the form zi(t hning + A) as- tdzjfdt(t o t At), and taking the

limit as At - 0 we obtain a differential equation,
dzi I I
T z i e - -Wja(Xj)zj. Tj(6)

Let

v#(t) = a0 j a)) = 0 (7)

where y(jl,) is the same as y except that w4 is increased by from t through tt.

Again examining figure 2, we see that the appropriate difference equation for v is

Vii(t) = vij(t + At) + Aty1 (t)O"'(X(t))Izj(t + -At)
j
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w~hich leads to the differential equauon

d'" = - -- ' ('(x. )z

di 1
°

which we can integrate from to to ti. By substituting t.,(tl) = 0 and t,(tO) =E/,)wv
into the resulting equation we eliminate and end up with

dE = f' y o(x 1 )zdt.

Ow9 TJ

If we substitute p, = T,-I into (4), find OE/3p, by proceeding analogously, and

substitute T, back in we get

=9E z,- t. (9)
8T dt

We will find a way to compute azQi()/8z,(to) useful. Let us define

= z,(t)10)8 zi(to)

and take the partial of (6) with respect to zj(to), substituting in (,, where appropriate.
This results in a differential equation for (,,

<q- = 1¢ -  _
___ C,- Wtka(Xk)(k. 11
d:k Tk

and for boundary conditions we note that

(yt)= 1 if i=j (2
f 0 otherwise. (12)

One can also derive (6), (8) and (9) using the calculus of variations and Lagrange
multipliers (Dr. William Skaggs, personal communication).

3 Utilization

The most straightforward way to use (6), (8) and (9) is to simulate the system y
forward from to to ti, set the boundary conditions zi(tl) = 0, and simulate the system
z backwards from t, to to while numerically integrating zj o"(x,) y, and z, dyi/dt thus
computing 8E/Ow,, and aE/8Ti. Aside from the practical problems of simulating
the system backwards in an actual learning application, the backwards simulation
of z as well as the integrals being computed require that y also be run backwards,
necessitating either remembering the trajectory of y, which can require prohibitive
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amounts of storage, or the backwards simulation of y itself, which is typically ill
conditioned.

However, running the system backwards can be avoided. Given guesses for the
correct values of z,(to), one can simulate y, z and forward from to to t and then
update the guesses in order to minimize B where

B13)

by making use of the fact that
(9B = M z,( tl) v ). (14)

'z/(to)

For notational convenience, let bi = 9B/z,(to). We can use a Newton-Raphson
method with the appropriate modification for the fact that B has a minimum of zero,
resulting in the simple update rule

B
zi(to) - zi(to) - 2 1bi. (15)

During our simulation we can accumulate the appropriate integrals, so if our guesses
for z,(to) were nearly correct we will have computed nearly correct values for OE/Ow
and aE/8T,. If the w,, change slowly the correct values for z,(to) will change slowly,
so tolerable accuracy can be obtained by using the 8E/ Uwij computed from the
slightly incorrect values for zito) while simultaneously updating the zi(to) for future
use, eliminating the need for an inner loop which iterates to find the correct values
for the z1(to). This argument assumes that the quadratic convergence of the Newton-
Raphson method dominates the linear divergence of the changes to the w1i , which
can be guaranteed by choosing suitably low learning parameters.

4 Future Work
We are planning on performing the following experiments in the immediate future:

" Learn a simple xor problem, with the functional requiring the output to be
correct after 2 time units.

" Follow a square trajectory in state space, where the desired trajectories of two
visible units are specified explicitly using a func "rnal of the form

E si(yi - di)dt (16)

where d, is the desired trajectory for yi and si is the importance of yi attaining
d, at time t. For this functional, the instantaneous error takes on the particularly
simple form ei = s,(yi - di). Note that following a square trajectory requires
the use of hidden units.

5



e Teach two visible units to follow a circular trajectory m state space, but rather
than specifying the trajectory explicitly, require that the trajectory be on the cr-
cle ih celter ic: c2) and radius r and that the velocity be v using a funcuonal
like

-I 2 " ' '' '' '.

E= ((v -c) I + (yz-cz) 
2
- r + (+' +,2 - v> dt 1-7)

Assuming that these simulations are successful, we are planning on using this
procedure in the domain of control as part of the author's thesis work on learning to
control robot manipulators using connectionist networks [1].
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